Effects of Beta-glucan supplementation in late gestation sows on the level of colostral immunoglobulin G and piglet growth performances Jakavat Ruampatana ^a, Unchean Yamsrikaew ^a, Banthita Chuaydamrong ^b, Nathathai Soodsaward ^b,Ponlatorn Rukklang ^b, Suphacha Boonyasantisuk ^b, Suphasorn Ratchatakajornkit ^b, Junpen Suwimonteerabutr ^a, **Morakot Nuntapaitoon** ^{a,c,*} ^aDepartment of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, ^b5-year student, Faculty of Veterinary Science, Chulalongkorn University, ^cCenter of Excellence in Swine Reproduction, Chulalongkorn University, Bangkok 10330, Thailand *Corresponding author: Morakot.N@chula.ac.th #### **OBJECTIVES** The objectives of the present study are to investigate the effects of beta-glucan supplementation in late gestation sows on the level of colostral immunoglobulin G and piglet growth performances. Immunoglobulin G (IgG): ELISA kits (Bethyl laboratories*) ## MATERIALS AND METHODS CONTROL (n=30) - sows were fed a conventional diet. **TREATMENT** (n=31) – sows were fed a conventional diet and supplemented with 1 g/sow/day Beta-glucan (ALETATM, Kemin industries, Thailand Co. Ltd.) for 30 days before predicted farrowing until 21 days after parturition (54.5 \pm 4.7 days). #### RESULTS AND DISCUSSION Supplementation with Beta-glucan in late gestating sows significantly elevated colostral IgG concentration compared to control group (53.0 vs. 42.4 mg/ml; P = 0.45) (Figure 1). This finding aligns with a previous study demonstrating the immunomodulatory properties of Beta-glucan, indicating its potential to enhance passive immunity transfer in piglets (1). Figure 1 Effect of Beta-glucan supplementation on colostral IgG concentration. a, b indicates significant differences among the groups (P < 0.05). Figure 2 Effect of Beta-glucan supplementation on average weight at D21 and weaning. Significant difference between group at *P < 0.10 and ** P < 0.05. The piglet's W_{21D} in the supplemented sows was numerically higher than in the control sows (5.2 vs. 4.9 kg; P=0.08) (Figure 2). The piglet in the supplemented sows had higher W_W than in the control sows (7.8 vs. 7.5 kg; P=0.05). This is in agreement with Heim et al. (2), which showed that maternal Beta-glucan supplementation improved piglet growth. # CONCLUSIONS Supplementation of Beta-glucan during late gestation in sow enhanced colostral immunoglobulin G and piglet performances. #### ACKNOWLEDGEMENTS Financial support for the present study was provided by Faculty of Veterinary Science, Chulalongkorn University, and Kemin Industries (Thailand) Co., Ltd. ### REFERENCES - 1.Carvalho et al., 2023. Anim. 13: 3490. - 2. Heim et al., 2015. Anim. Feed Sci. Technol. 204: 28-41.