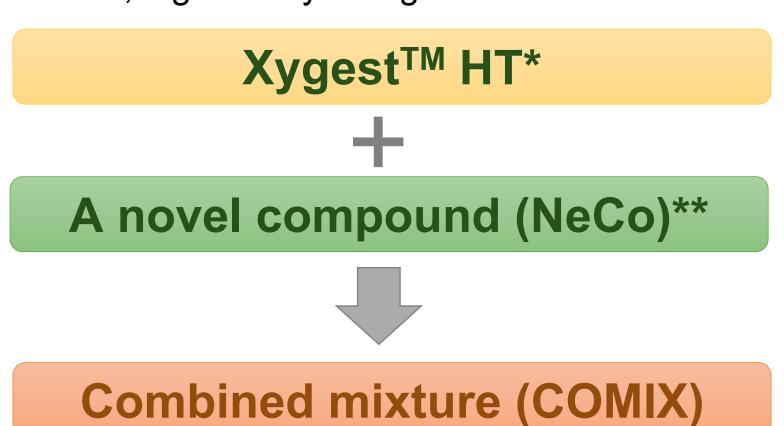


A novel approach to support the monogastric gut ecosystem in laying hens


Riet Spaepen, Ingrid Somers, Frederika Somers, Veerle Van Hoeck and Bart Forier Kemin Europa N.V., Toekomstlaan 42, 2200 Herentals, Belgium

Introduction

Xylanases are commonly added to poultry feed to degrade non-starch polysaccharides (NSP) for improving zoo-technical performance and nutrient digestibility.

Objective of the study

The present study aimed to identify potential synergistic effects between the supplementation of a new intrinsically thermostable xylanase and a novel feed compound in a wheat-based broiler diet, on bird performance, digestibility and gut health

*Xygest HT, an intrinsically thermostable endo-1,4-beta-xylanase enzyme produced

by *Komagataella phaffi*, KEMIN Europe n.v.)

** A novel compound with numerous physiological benefits including antibacterial, antioxidant and anti-inflammatory properties, described to result in positive impacts on production performance, gut health and immunity

Experimental design

Animals

- 40 white Hisex laying hens
- o 22 weeks old
- Duration: 60 days
- o 10 replicates, 1 bird per replicate
- basal diet based on wheat (~55%), soybean and sunflower meal

Treatments

Group 1 Control	Group 2 NeCo	Group 3 Xygest™ HT	Group 4 COMIX
Basal diet (BD)	BD + NeCo (50 mg/kg feed)	BD + Xygest [™] HT (15 mg/kg feed)	BD + NeCo (50mg/kg feed) + Xygest™ HT (15 mg/kg feed)

Read outs

- Laying hens' performance
- Egg quality
- Nutrients digestibility
- Jejunal morphology
- Serum cytokines as biomarkers for immune and inflammatory response
- Cecal microbiome

Results

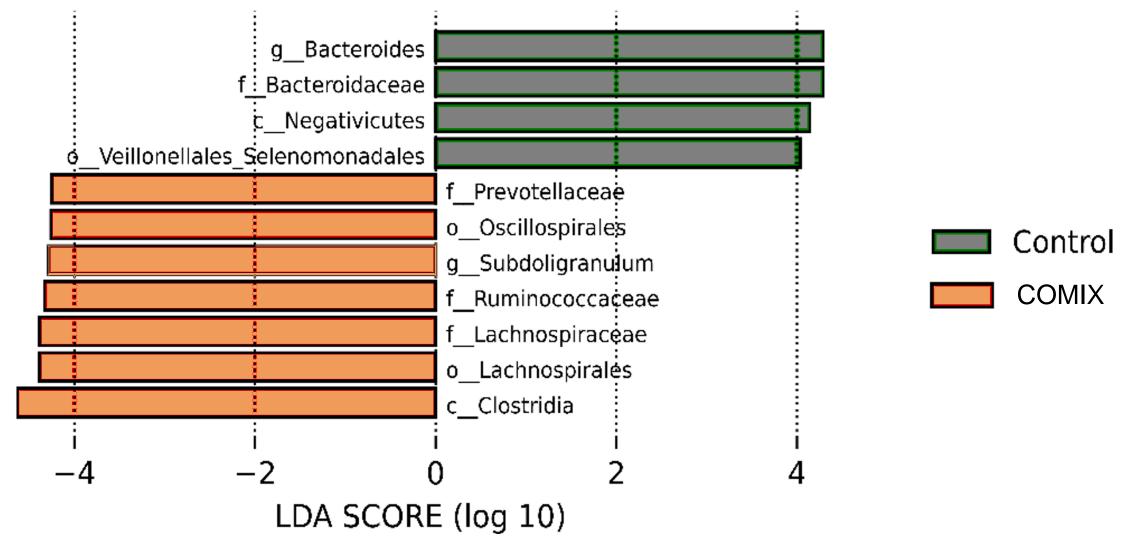
Nutrient digestibility

Parameters	Control	NeCo	Xygest HT	COMIX	SEM	P-value
DM Digestibility (%)	64.82 ^b	67.36a	68.32 ^a	68.88 ^a	0.620	0.0002
OM Digestibility (%)	68.65 ^b	70.92 ^a	71.50 ^a	72.44 ^a	0.562	0.0003
CP Digestibility (%)	73.97 ^c	77.59 ^b	79.53 ^{ab}	81.43 ^a	0.833	<0.0001
Nitrogen Retention (g/kg)	20.95 ^c	21.81 ^{bc}	22.60 ^{ab}	23.09 ^a	0.236	<0.0001
AME (kcal/kg)	2725.9b	2805.0a	2824.2a	2843.9a	20.20	0.0012
AMEn (kcal/kg)	2553.7b	2625.7ab	2638.5a	2654.0a	19.39	0.0042
GE Digestibility (%)	70.10 ^b	71.70 ^{ab}	72.49 ^a	72.93 ^a	0.518	0.0025
CF Digestibility (%)	74.02 ^b	79.63 ^a	80.45 ^a	81.32 ^a	0.667	<0.0001
CFi Digestibility (%)	3.26 ^c	15.88 ^b	23.26 ^a	23.61 ^a	0.633	<0.0001

DM= dry matter, OM = organic matter, CP = crude protein, GE= gross energy, CF = crude fat, CFi = crude fiber

0,6 0,5 0,4 0,3 0,2 0,1 0 Control NeCo Xygest HT

Jejunal morphology (p<0.0001)


Cecal microbiome

Serum cytokines

Parameters (pg/ml)	Control	NeCo	Xygest HT	COMIX	SEM	P-value
TNF-α	283.0a	94.7 ^b	65.3 ^b	55.3 ^b	34.4	<0.0001
IL-1α	687.3 ^a	135.3 ^b	234.3 ^b	111.0 ^b	114.7	0.003
IL-1β	146.2	105.4	97.1	60.1	21.5	0.060
IL-6	1870.6	1731.7	1744.0	1953.5	95.8	0.313
IL-10	228.9 ^a	181.8 ^b	164.2 ^b	173.2 ^b	11.7	0.002

Laying hen performance and egg quality

					LDA SCORE (
Parameters at end	Control	NeCo	Xygest HT	COMIX	SEM	P-Value
Body weight (g)	1612.1 ^b	1620.5 ^{ab}	1628.4 ^{ab}	1634.6a	5.61	0.0420
Av. Daily Feed intake (g/hen/day)	111.4 ^a	107.8 ^{ab}	105.9 ^b	105.3 ^b	1.015	0.0006
FCR (g feed/g egg mass)	2.034 ^a	1.895 ^b	1.840 ^c	1.802 ^c	0.012	<0.0001
Laying rate (%)	93.5	94.7	94.7	95.0	0.673	0.4496
Egg Weight (g)	58.5 ^d	60.1 ^c	60.8 ^b	61.6 ^a	0.184	<0.0001
Egg Mass (g/hen/day)	54.7 ^b	56.9 ^a	57.6 ^a	58.5 ^a	0.414	< 0.0001
Yolk Color Score	4.7 ^b	5.3 ^b	6.7 ^a	7.3 ^a	0.325	<0.0001
Albumen Height (mm)	6.5 ^c	7.2 ^b	7.9 ^a	8.1 ^a	0.239	<0.0001
Haugh Unit (HU)	79.5 ^b	84.4 ^a	88.7 ^a	89.0 ^a	1.720	0.0004
Shell Breaking Strength (kg.force)	3.8 ^{bc}	4.3 ^b	4.7 ^{ab}	5.1 ^a	0.182	<0.0001

LDA = Linear Discriminant Analysis, represents the effect size of each abundant species in the cecal microbiome (Harakh et al. 2020)

COMIX

Conclusion

Both the novel component (NeCo) and Xygest™ HT increased digestibility in **nutrients** and promoted a better gut health as seen **in more villi surface for nutrient absorption**, a reduced inflammation/ higher immune response and positive impact on the cecal **microbiome**. This resulted in an **improved laying hen performance**, **feed efficiency** and **egg quality** compared to hens that where not supplemented. However, their **combined inclusion** (**COMIX**) provided an additional, even significant better effect, which indicates a valuable **synergy** between both compounds in supporting an **optimal laying hen production**.

