Effect of lysophospholipids and xylanase supplementation on growth performance in turkeys

Somers I.¹, Wealleans A.¹, Scholey D.², Desbruslais A.¹, Gonzalez-Sanchez D.¹ and Burton E.² ¹ Kemin Europa NV - Toekomstlaan 42 - 2200 Herentals Belgium – ingrid.somers@kemin.com ² Nottingham Trent University - Brackenhurst Campus – Southwell – United Kingdom

Introduction

Xylanase is routinely added to monogastric feed to degrade non-starch polysaccharides. Likewise, lysophospholipid (LPL)-based additives have been found to support the digestion and absorption of various nutrients. However, there is a scarcity of data on the effect of combining both a xylanase and an LPL-based additive on bird performance. Objective of this study was to evaluate possible interactions of an additive containing LPL, monoglycerides and a synthetic emulsifier (LEX) and xylanase (XYL) supplementation on growth performance in turkeys.

Materials and Methods

- 192 BUT 6 mixed-sex turkeys were assigned to a 35-day study
- 2 x 2 factorial design
- 12 pen replicates/treatment (4 turkeys/replicate)
- Feed intake and body weight were measured weekly
- Data were analysed by ANOVA using the fit model platform of JMP 16.1 and means separation was achieved using student's t-test. Differences were considered significant at p<0.05; p<0.1 was considered a trend.

Treatments

T1: Control

T2: LEX at 500g/t

T3: XYL at 45,000 U/kg (Xygest[™] HT)

FCR

FBW

T4: LEX + XYL

Results

- LEX supplementation increased (p<0.05) body weight gain (BWG) and feed conversion ratio (FCR) between 0 and 28d and delivered higher (p<0.05) final body weight (FBW) by almost 70 g at d35 compared to the control.
- During the total trial period (from 0 to 35d), XYL supplementation tended to improve (p=0.088) FCR by 7 points compared to the control.

BWG

• No interactions were observed for any of the parameters.

Treatments	,	0-28	0-35	0-28	0-35	0-28	0-35	d35
Control		1454.2	2294.2	928.9 ^a	1459.4 ^a	1.562 ^a	1.571	1530.2 ^a
LEX		1441.5	2396.6	987.0 ^b	1556.7 ^b	1.460 ^{ab}	1.547	1629.4 ^b
XYL		1431.8	2274.2	963.1 ^{ab}	1512.0 ^{ab}	1.486 ^{ab}	1.505	1584.9 ^{ab}
LEX+XYL		1404.7	2267.8	988.5 ^b	1545.3 ^b	1.419 ^b	1.467	1620.1 ^b
SEM (n=12)		53.2	80.5	19.5	29.8	0.043	0.044	31.0
Main effect factors								
LEX	0	1443.0	2284.2	946.0 ^a	1485.7 ^a	1.524 ^a	1.538	1557.6 ^a
	500 g/T	1423.1	2332.2	987.8 ^b	1551.0 ^b	1.439 ^b	1.507	1624.8 ^b
XYL	0	1447.8	2345.4	958.0	1508.1	1.511	1.559	1579.8
	45,000 U/kg	1418.3	2271.0	975.8	1528.7	1.452	1.486	1602.5
SEM (n=24)		36.6	55.4	13.4	20.5	0.029	0.030	21.4
P-value for main effects and interactions								
LEX		0.696	0.539	0.030	0.027	0.044	0.460	0.029
XYL		0.562	0.343	0.342	0.472	0.157	0.088	0.447
LEX*XYL		0.888	0.486	0.383	0.266	0.460	0.873	0.285

^{a-b} Different letters indicate significant differences (p<0.05); SEM: standard error of the mean.

Feed intake

Conclusion

Supplementing a turkey diet either with LEX or a xylanase or in combination, induced

positive performance effects compared to feeding a non-supplemented diet.

© Kemin Industries, Inc. and its group of companies 2023. All rights reserved. ® ™ Trademarks of Kemin Industries, Inc., U.S.A. Certain statements, product labeling and claims may differ by geography or as required by government requirements.